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RESPECT TO 

We use the method of Liapunov functions to obtain a set of control laws securing 

the Liapunov stability of an unperturbed motion of the controlled system and its 
asymptotic stability with respect to a part of, the variables. The properties of the 
stabilizing laws obtained here are determined and the laws which are compulsor- 

ily optimal are separated from the set, An example is given. 

1. Statement of the problem. We consider a controlled system, the per- 
turbed motion of which on the set H is described by the equation 

x* = CD (I, u, t), x E Rn, u E Rm, m < n 

H = (2, t: II 5 0 < h, t > 0) ( 11 5 (I 2 = XTX, h = const > 0) 
(1.1) 

Here UI (z, U, t) = (01, . . ., @,,} is a vector function satisfying the conditions of exist- 
ence and uniqueness of the solution of (1.1) on a certain set of continuous control laws 

u= 11(x, t), u (0, t) = 0 (1.2) 

Following [l- 31, we formulate the problem of stabilization in the following manner. 
Problem. Let a set of control laws (1.2) be given. We require to separate from 

(1.2) a subset of laws on which the unperturbed motion z = 0 of the system (1.1) is 

Liapunov stable, and asymptotically stable with respect to the variables zl, . ., xr, r Q A. 

The set of laws emerging as the result of solving the problem, will be called the set 
of stabilizing control laws or the set of stabilization laws. 

2. Strbiliertlon theotom. In order to solve the problem, we introduce the 
scalar functions V (x, t) and W (2, tj which are positive-definite on the set Hi = (3, 

t: 1 z [ < hl i h, t > O>+ V (x, 1) with respect to the variables 21, . . ., x,, and W (I, t) 
with respect to 219 . - -V XP 

In analogy with [3, 41, the function W (2. t) is called positive-definite with respect 

to the variables zi, . . ., xr on HI, if W (0, t) E 0 and a continuous, positive-definite 

Liapunov function w (xi, . . ., x7) can be shown on the set Ho = (21, . . ., 6 X21 -k 
. . . i- zra< haI) such that for all z, t E Hl 

W (2, t) >, W (219 . . . -9 4 (2.1) 

Let the function V (z, t) be defined and continuous on Hi together with its partial 

derivatives V,’ = V_‘, . . ., Vri]T and Vt = dV / dt. 

Theorem. Any control law (1.2) which ensures that the condition 

vx* @(x, I/, t) + vt = - w (x9 t) (2.2) 

holds on the set H,, is a stabilizing control law for the system (1.1) provided that for 

all x, t E HI 
xA(x, u, t) + . . * + .d’r (x, u, 4 Q N, N > 0 (2.3) 
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To prove the theorem we first note that in accordance with the first .Liapunov theorem 
and the condition (2.2) holding, the closed system (l,l),( 1.2) is stable with respect to the 
variables 21, . . ., z,, and for any arbitrarily small a > 0 , a number 8 > 0 can be shown 

such that 11 z (t) II < e for all t > 0 provided that 

II = (0) II 6 6 (2.4) 
Moreover,by virtue of the inequality (2.1) we find that for any motion originating in the 
region (2.4) we have t 

s 
w (21 (T), . . . . zT (z)) dr d V (x (Oh 0) - V (x(t), t), f > 0 

0 

and, since Y’ (z, t) < 0 on HI, we have 
OD 

s 
UJ (a(t), . . . . x,. (t))dt< V (z (Oh '3 (2.5) 

0 

Next we shall show that (2.5) and the condition (2.3) of the theorem together yield 

rzal 0) + l . . + 2% (4 + 0 as t+co (2.6) 

In fact, let us assume that (2.6) is incorrect. Then, using the very concept of the limit 
we can show an infinitely increasing sequence of time instances {tk} such that 

ssr (&) + . . . +x2, (tk) >, sit s1 = const > 0, k = ‘1, 2, . . . (2.7) 

From (2.7) and (2.3) follows 
z21 (t) + . . ., zra (t) > s,, 5, = con& > 0, s, < s1 

for at least all t E [tk - At, tk], where At = (sl - s,) / 2~. Let now 
7 

11 = min ( w (x1, . . . . xT) for s2 4 2 q<eg 
i=1 

Then for any tk we have fh. 

s 
w @I@), . . . . x,. (9) dt > rlAi 

tk-At 

which contradicts the convergence of the integral (2.5). Consequently, it follows that 
(2.6) holds and the closed system (1. 1), (1.2) is asymptotically stable with respect to 
the variables zl, . . ., G. 

We note that the conditions of the theorem do not include the condition of an infini- 
tesimal upper bound not only with respect to the variables zr, . . ., zr, but also with re- 
spect to X1, . . ., G. This enables us to assert, in particular, that the control law u = 
U” (x, t) satisfying the conditions of the theorem given above, is optimal with respect to 
the functional 

J (u) = y L (xr U, t) dt, L (2’ u, t) > 0 
0 

provided that L (5, u” (z, t), t) = W (x, t) and the relation 

VJzT@ (29 % r) + ‘vt + L (5, u, t) > 0 

holds for any vector u # uO. 
The validity of the above assertion follows directly from the fundamental theorem of 

optimal stabilization [1] the conditions of which allow the omission of the requirement 
of the infinitesimal upper bound. We note that 
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00 

min, 
s 

L(2, u, t)dtQ V@(O), 0) (2.8) 
0 

and the equals sign appears in (2.8) only when the unperturbed motion of the system 

2. = CD (5, u” (5, t), t) 

is asymptotically stable with respect to x1, . . ., xn. 

3, Particular ca161 of rtobllieation. Let a perturbed motion of the sys- 
tem stabilized with respect to the variables x1, . I ., x7 be described by the equation 

z’ = F (x, t) + G (x, t) u (3.1) 

where F is an n-dimensional vector function and G is a ( IZ X m )-matrix. The con- 

dition (2.2) is reduced in the present case to the form 

VsT (F + Cu) + Vt = - W (x, t) (3.2) 

and the set of laws ensuring that (3.2) holds is determined by the expression 

u = P (5, t) - (W (5, t) + VxTF + V,) ( V,TCCTVr)-l GTVx 

provided that 

pTGTVx = 0, VxTGGT Vx # 0 
on H, 

In the general case the function VxTGGTVx # 0 may vanish when 11 z /I # 0, therefore 

the solution of the problem of stabilizing the system (3.1) is naturally sought in the form 

ZL = z(s, t) - hG”V, (3.3) 

where I and h are arbitrary vector and scalar (h = h ( x, 1)) functions connected by the 

equation 
Vt = - W (5, t) - VxT (F + Gz) + Rv,~GG~ vs (3.4) 

and by the restriction 

Ir,, . . ., Zrr 0 I . . 9 0] (F + Gl - kGG?‘V,) < AT, 5, tEH, 

Setting in (3.3) and (3.4) I E 0 and requiring that the inequality 

h (x7 t) > 0 (3.5) 

holds on HI, we obtain the following stabilization law : 

u = -kGTVx, vt = - w (5, t) - VxTF + hVxTGGT V, 

which is compulsorily optimal [5]. 
We note that when the inequality (3.5) holds, any of the laws (3.3) acting upon the 

motions (3.1) of the system produces a minimum in the value of the functional 
m 

J= 
it W(? t) +~IIrll”-+U GTVZ 12 - f uT1 + -& /[:u la 1 dt 
0 

The intermediate position between the stabilization laws (3.3) and (3.6) is occupied by 

u = - hGTVx + PG=V, 

where P = P (5, t) is an arbitrary skew-symmetric matrix and 

u= --AG’V~, Vt = - W(x, t) - VxTF + VxTGAGTVx (3.1) 

where A = A t5, t) is a positive-definite ( m X n)-matrix. Incidentally, in accordance 
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with [5], the control laws of the type (3.7) can be regarded as compulsorily optimal 
laws, provided that the quadratic form 2~20 = ES”A-1 u is adopted as the forcing norm. 

It is clear that the control law (3.6) guarantees the stabilization of the system 

5. = F (x, 4 + G (5, t) cp (4 t) (3.8) 

with respect to the variables zl, . . ., 23. for any vector functions cp (u, t) satisfying 
the condition 

UT 9, (u, t) > zu, t>o 

and a constraint of the form (2.3). and the law (3.7) in the case when the matrix A is 

diagonal for any 9 (u, t) = {cpl (I+, t), . , ,, cpm (urn, t)l satisfying the inequalities 

Ui’Pi (49 1) > Ui’, t>o (i= 1, . . ., m) 

In addition, if on the motions (3. l), (3.6) we have 
m 

minu f (u) = 9, I (u) = 
5[ 

w (r, t) - + 
1 

VxTGGTV, +x uT& dt 
0 I 

then on the motions (3.8), (3.6) we have 
x0 = max,min, I (u). 

Similar relations take place in the case (3.7) when 

I,U)=s”[w(% t) -$ VxTGAGTV, ++yT&]dt 
0 

4. Example, We consider the problem of damping the rotation of a body clamped 
at one point. Let P = 2 , and the perturbed motion is described by the equations 

B-C 1 
Xl’ = - n&q -I- - 

C-B 
A A ‘PI (UI, t), xz. = - B %@I + $q% (u2, t) 

23’ z 
A-B 
- 31x2 

c 

where A, B and C are principal moments of inertia of the body. In this case (3.7) can 
be satisfied by setting 

V = AczzaI + Bxsa + CZ,, w = 4&x21 + 4k&, u1 = - 2hlrl 
u, ‘= - 2h,xs 

where Ai and A, are positive constants. 
We note that the stabilization of the system 

B-C I 
21’ =-x2x3+ AU" 

C-A i 
z.%‘= -x3zE~+7j-u2, 

A-B 
A B xs’ = - x1x2 

C 

with respect to the variables xl and zs is guaranteed by the control laws obtained with 

the functional co 

J (20, 7.42) = 
SC 

1 
2 (?&2+ hzs22)+ + a, Ul=+&1(22 

( 13 
dt 

0 

assuming a minimum value. 

The above example can be generalized by making the following assertion. Let the 
stabilized system be described by the equation 

5‘ = P (z) + G [x)u 
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and let V (4 be a positive-definite Liapunov function satisfying the condition V,*F ~0. 
The control law U = - AGTV, 

quarantees the asymptotic stability of the system with respect to the variables y,== Ye, 

. -*T Yr = yr, (5) with the functional 

I(W)&$T GAGTI’, + uTA%) dt 

0 

assuming its minimum value, provided that the function v~TGAGT~,~ is positive-definite 
with respect to gr, . . ,, y,. 
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A solution for a weakly nonself-similar axisymmetric jet submerged in a rotating 
viscous incompressible fluid is derived in a boundary layer approximation. An 
asymptotic expression is obtained for the jet field at considerable distances from 
the source, where it becomes self-similar. 

1, Let a half-space filled by a viscous incompressible fluid and its solid plane bound- 
ary rotate at constant angular velocity o around an axis normal to that plane. 

We attach to the solid plane a right-hand system of cylindrical coordinates r, 9, z 
and make the half-space boundary to coincide with the plane z = 0 so that for every 
point of the fluid z > 0. Let us consider the problem of slow steady axisymmetric rela- 
tive motions of the fluid in the half-space, induced by the velocity distribution at the 
solid plane 

v IWO = ezwO (r) (1.1) 

with conditions at infinity 


